|
Падающие на Землю нейтрино глазами художника. Изображение с сайта icecube.wisc.edu
Ученые опровергли очень популярную астрофизическую гипотезу На днях группа ученых опубликовала результаты анализа данных, которые получил один из самых удивительных существующих физических приборов - вмороженный в лед Антарктиды гигантский детектор нейтрино IceCube. Собранный "ледяным кубом" материал неожиданно для всех опроверг очень популярную астрофизическую гипотезу, лишив исследователей отличного объяснения загадочного космического явления - космических лучей необычайно высокой энергии, пронизывающих Вселенную. Источник энергии Необъятное космическое пространство только кажется пустым - в действительности огромные расстояния между галактиками, звездами и планетами непрестанно пересекает бесчисленное множество всевозможных частиц. Большую часть из них составляют электроны или ядра атомов - в основном, ядра водорода (то есть одиночные протоны), но встречаются также и ядра более тяжелых частиц вплоть до железа. Потоки этих частиц, которые часто называют космическими лучами, путешествуют по Вселенной практически со скоростью света, и, как считается, большая их часть рождается при взрывах сверхновых. Этим термином называют последнюю стадию жизни некоторых звезд, во время которой из-за выгорания питающего звезду водородного топлива, внешние оболочки светила "обрушаются" внутрь. Происходящий взрыв выбрасывает в окружающее пространство большую часть вещества, из которого состояла звезда. Кроме того, при вспышке сверхновой появляются быстро меняющиеся магнитные поля, которые отклоняют летящие по космосу заряженные частицы от их первоначального маршрута. Если частица попадает в "ловушку" магнитных линий, она многократно меняет свою траекторию, накапливая энергию при каждой смене направления. Со стороны такая частица выглядит как шарик для настольного тенниса, отскакивающий от невидимых ракеток. Однако такие магнитные "качели" не объясняют природы самой удивительной когорты космических лучей, обладающих колоссальной энергией - она на много порядков превосходит те энергии, которые физики могут "вкачать" частицам в ускорителях. Максимальная энергия, которую удастся придать протонам в ускорительном кольце Большого адронного коллайдера (при условии штатной работы), составит 7x1012 электронвольт, а удивительные космические лучи врезаются в планету с энергией около 1x1018-1x1020 электронвольт.
|